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Chain Termination Sequencing 





“90% of the three billion base pairs comprising the genome have been read and  
recorded. The completed work delivers surprises.  Perhaps the biggest is that the  
human genome, estimated at the beginning of the project to contain 80,000 to  
100,000 coding genes, appears to possess fewer than 25,000. ” 





(Source: http://omicsmaps.com/. 2013 Oct. 23) 



Next Generation Sequencing/Deep Sequencing Sanger Sequencing 



Genome  
Analyzer 

SOLiD 3 454 

HiSeq  
 2500 
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Read: A short DNA fragment which is read out 
by sequencer. 

– DNA sequence (symbols) 
 

– Quality information 
In  FASTQ format 

@test_fastq 

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAA 

+ 

!''*((((***+))%%%++)(%%%%).1***-+*'' 

Seq  ID:  test_fastq 

Sequence:  GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAA 

Quality:     !''*((((***+))%%%++)(%%%%).1***-+*'' 
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Quality: Given p = the probability of a base calling  
is wrong, its Quality Score can be written as 
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Seq Qualit
y  
Symbo
l 
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Score 

p 

G ! 0 1.00  

A' 6 0.25  

T' 6 0.25  

T * 9 0.13  

T( 7 0.20  

G( 7 0.20  

G( 7 0.20  

G( 7 0.20  

G * 9 0.13  

T * 9 0.13  

T * 9 0.13  

C + 10 0.10  

A) 8 0.16  

A) 8 0.16  

A % 4 0.40  

G % 4 0.40  

C % 4 0.40  

A + 10 0.10  

G + 10 0.10  

T) 8 0.16  

A( 7 0.20  

T % 4 0.40  

C % 4 0.40  

G % 4 0.40  

A % 4 0.40  

T) 8 0.16  

C. 13 0.05  

A 1 16 0.03  

A * 9 0.13  

A * 9 0.13  

T * 9 0.13  

A‐ 12 0.06  

G + 10 0.10  

T * 9 0.13  

A' 6 0.25  

A' 6 0.25  

@test_fastq 

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAA 

+ 

!''*((((***+))%%%++)(%%%%).1***-+*'' 
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Paired‐End Reads 
 
 
 
 
 Insertion 

 @test_fastq/1 
 GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAA 

 + 

 !''*((((***+))%%%++)(%%%%).1***-+*'' 
 
 
   @test_fastq/2 
   ACATACTATTACTCATTACTCCTCATANNNNTNCNN 

   + 

   BBB1',9,66<B>9<74<=BB@4=93'!!!!)!'!9 

 





mapping 

     Reference Genome 
 
 
   GGTATAC… 
…CCATAG               TAT   CGCCC         CGGAAATTT   CGGTATAC 
…CCAT           CTATAT   CG                  TCGGAAATT      CGGTATAC 
…CCAT    GGCTATAT   CGC    CTATCGGAAA         GCGGTATA 
…CCA   AGGCTATAT   CGCCCTATCGGA          TTGCGGTA      C… 
…CCA   AGGCTATAT        GCCCTATCG              TTTGCGGT         C… 
…CC      AGGCTATAT        GCCCTATCG    AAATTTGC          ATAC… 
…CC   TAGGCTATA       CGCCCTA              AAATTTGC   GTATAC… 

 …CCATAGGCTATATGCGCCCTATCGGCAATTTGCGGTATAC… 
 
 
 

    Genetic variants 
   



Genetic  
markers 

  Genetic  
   variants 
 
 
Underlying 

association 
 
 
 

 Phenotypic Trait  

    Variance 

Association Study: for the given phenotypic trait, “functional variants” could be  
identified by comparing allele frequencies at hundreds of thousands of  
polymorphic sites, i.e allele A is associated with phenotypic trait P if (and only if)  
people who have P also have A more (or less) often than would be predicted from  
individual frequencies of A and P in the assessed population. 
 
 
 
 
 Association between 

  variant and marker 
(i.e. LD) 



(Source: Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19096) 

Choi et al.used whole‐exome sequencing to discover the cause of disease in an individual with  
an unclear diagnosis. They identified a missense mutations in positions that were highly  
conserved from invertebrates to humans, in a gene known to cause congenital chloride‐losing 

diarrhoea, consistent with the patient’s symptoms.      



RNA‐Seq: Explore the transcriptome 

Source: http://www.mun.ca/biology/scarr/Gr10‐11.html 
 
 
 
 
 
 

 “A transcriptome is a collection of all the transcripts present in a given  

 cell.” (NHGRI factsheet, NIH, US) 
 
 
   









Chromatin  
ImmunoPrecipita‐ 
tion Sequencing  
(ChIP‐Seq):  
 
 
 
 
 

Profile Protein‐ 
DNA interaction 
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Map‐Making / Cartography:  
Establish relationship between locations 

Reads Mapping 
 
 
 

 Technological: Reads is  
 usual too short to be  
 used/assembled de novo 
 
 
 
 
 
 
 

 Scientific: Taking full  
 usage of existing  

annotation/knowledge 





Mapping: Input Data 
•   Reference Genome 

–  Nucleotide 
–  Length: Hundreds of Mb per chromosome. 
–  ~3 Gb in total (for human genome) 

•   Reads 
–  Nucleotide, with various qualities (relatively high error rate: 1e‐ 

2 ~ 1e‐5) 
–  Length: 36~80 bp per read 
–  Hundreds of Gbs per run 



 “Embedded” Alignment 
 
 
 
 
 
Genome 

 Read 
 
 
 
 

One sequence is “embedded” in the other  
sequence (NGS Reads, PCR primer, etc.) 
 
 
 
 
 
   



Genome 

   Read 
 
 
 

What we need here is actually a hybrid “global‐local”  
alignment 
  “Global” for short sequence (i.e. NGS Read) 

  But “Local” for long sequence (i.e. Reference Genome) 

  In particular, the surrounding “overhang” gaps should be not  

  penalized. 
 
 



1‐2 
  

1‐ 
 

0 

1‐ 0 0 

M Match 

X Insertat sequence X 
(delete at sequence Y) 

Y Insertat sequenceY 
(delete at sequence X) 

 Gap open 

 Gap Extension 

M 

X 

Y 

 

 

 

1‐ 

  
 
 

1‐ 

1‐2 

M X 

M 

Y 

 X 
 
 
 

 Y 
 
 
 
 
 



Genomic chromosome: m = hundreds of Mb 

Sequencing Read: n = 36~80bp 

In real world, the speed will be a BIG problem! 
 
 
 
 
  



 BLAST Ideas: Seeding‐and‐extending 
 
 

1.   Find matches (seed) between the query and subject 
2.   Extend seed into High Scoring Segment Pairs (HSPs) 

– Run Smith‐Waterman algorithm on the specified region only. 
3.   Assess the reliability of the alignment. 





 

Data 

Keys Index 

 Data 
Block 1 

 Data 
Block 2 
 
 
 

   

  Data 
 Block i 
 
 
 
 
 

  Data 
Block n 

Index 
Function 
 
 
 
 
 
 
 
 
 
 
  



Key Hash 
function 

(Hashed) 
keys 

Data 

 Hash 
 

Hash function maps (partial) data into (hashed) keys for  
following‐up indexing 



Index  
Table 

… 

20 

… 

123456789012345678901234567890 
 
TAACCCTAACCCTAACCCTAACCCTAACCC 

∑ , e.g: 

HBS: A naive hash function 
 
 

Let’s assume: A = 1, C = 2, G = 4, T = 8, then: 
HBS(AAAAA)  =  1  +  1  +  1  +  1  +  1  =  5 

HBS(GTACG)  =  4  +  8  +  1  +  2  +  4  =  19 

… 

CCTAA 
HBS 2+2+8+4+4 

=20 Address  

 Table 
(CCTAA,11) 
  … 

Reference Genome 



Pigeonhole principle (抽屉原理) 
 
 
 
“In mathematics, the pigeonhole  
principle states that if n items are put  
into m pigeonholes with n > m, then at  
least one pigeonhole must contain  
more than one item. ”  
  http://en.wikipedia.org/wiki/Pigeonhole_principle 
 
 After splitting the read into n (non‐overlapped) blocks, there will be  
 at least n‐m perfectly‐matched blocks (i.e. without any mismatch  
 with in the block) by allowing up‐to‐m mismatches. 
 
   One mismatch ELAND 

 MAQ 
 SOAP1 
Two mismatches    … 



Prefix Tree Suffix Tree 



Burrows–Wheeler transform (BWT) 

BOWTIE 
BWA 
SOAP3 
… 

(Li H, et. al, Bioinformatics, 2009) 
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 F i    1,   j    1   sx  i ,  y 

 F i    1,   j   d 

One of candidate sequence 

(Source: Bedell et al. 2003) 

 
 
 
 

 F i,   j    1  d 
 
 0 

F 0 ,0      0  
 
 
 

F i,   j     max 

j 



p Q 

0.1 10 
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0.001 30 
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Quality: Given p = the probability of a base calling  
is wrong, its Quality Score can be written as 
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Mapping Quality 
Given reference sequence z (length L), a read sequence x (length l), u is the  
alignment position of x on z, the probability that z actually coming from the position  
u is p(z|x,u) 

 p(z | x,u)     p(zi) 
  mismatch 

 (Genome Res. 2008 Nov;18(11):1851.) 

SQ(u)  log(p(z | x,u))      p(zi)     Q(zi) 
  mismatch                          mismatch 

Read:    ACGT    (Quality: 30 30 25 20) 
Ref:       ACGTACGGA 

ACGT 
 
 ACGT 
 
  ACGT 
 
   ACGT 
 
    ACGT 
 
     ACGT 

SQ(0) 
 
SQ(1) 
 
SQ(2) 
 
SQ(3) 
 
SQ(4) 
 
SQ(5) 

  0+    0+    0+    0 
 
 30+30+25+20 
 
 30+30+25+20 
 
 30+30+25+20 
 
  0+    0+    0+20 
 
 30+30+    0+20 
 



Mapping Quality 
If we assume that a uniform NULL model, i.e. the read can randomly come from all  
possible positions with equal probability, then the error of mapping to a specified  
position u could be written as (Genome Res. 2008 Nov;18(11):1851.) 

 SQ(u) 

SQ(i) 
E(u)  

 i 
 

Read:    ACGT    (Quality: 30 30 25 20) 
Ref:       ACGTACGGA                      SQ(u)       E(u) 

ACGT 
 
 ACGT 
 
  ACGT 
 
   ACGT 
 
    ACGT 
 
     ACGT 

  0+    0+    0+    0             0/415 
 
 30+30+25+20     105/415 
 
 30+30+25+20     105/415 
 
 30+30+25+20     105/415 
 
  0+    0+    0+20         20/415 
 
 30+30+    0+20         80/415 
 



  Genetic Variants 
 
 

•   SNV: Single Nucleotide Variant 
 –  Substitution (SNP) 
 –  Indel: insertion/deletion 
 
 
 
 

•   Structural Variation (SV) 
– 

– 

– 

– 

Large‐scale insertion/deletion 
Inversion 
Translocation 
Copy Number Variation (CNV) 



SNP Calling is NOT Genotyping 

•   “SNP calling aims to determine in which positions there  
 are polymorphisms or in which positions at least one of  
 the bases differs from a reference sequence” 

•   “Genotype calling is the process of determining the  
 genotype for each individual and is typically only done  
 for positions in which a SNP or a 'variant' has already  
 been called.” 



Counting: an intuitive (and naïve) approach  

• 
 
 
 
 
 
 
 
 

• 

Counting  high‐confident , non‐reference allele (i.e. Quality >= 20) 
 –   Freq <20% or > 80%: homozygous genotype 

 –   Otherwise: heterozygous 
 
 
 
Works well for “deeply sequenced regions” (DSR), i.e. depth > 25x 
 –   But suffer from under‐calling of heterozygous genotypes for low‐coverage regions 

 –   And can’t give an objective measurement for reliability 

                       Reviews Genetics 12, 443‐451) 



A Simple Probabilistic Model for Genotyping 

1. 
 
 
 
 
 
 
 
 
 
 
 
2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. 

For a diploid genome, there will be at most two different alleles (A and a)  
observed at a given site: 
–   3 possible genotypes: <A,A>, <A,a>, <a,a> 

–   Number of A: k; Number of a: n‐k 
 
 
 

Then, the probability for each genotypes is 
–   P(D|<A,A>) = the probability that we have (n‐k) sequencing errors at this site  
 ∏ 

–   Similarly, we can see the P(D|<a,a>) =∏ 

–   P(D|<A,a>) = 1 – (P(D|<A,A>) + P(D|<a,a>)) 
 
 
 
Bayes Formula can be further employed to calculate posterior probabilities,  
i.e. P(<A,A>|D), P(<a,a>|D), and P(<A,a>|D) if we can estimate the prior  
probabilities P(<A,A>), P(<a,a>) and P(<A,a>) 
 
   



Genome  
Analysis  
ToolKit 
(GATK) 

Nature Genetics 43, 491–498 (2011) 
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  Outline 
 
 

•   BWA & BWT algorithm 
 
 
 
 
 

•   Variant caller 
 – samtools 

 – GATK 
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  BWA / BWT algorithm 
 
 

•  The compression algorithm used in BWA 
 

•  Lossless compression 
 

•  Sort and transform the char matrix with string  
 rotation 
 

•  Reverse‐char method was utilized for match 
 

•  Cannot handle gap 



A C T A C G G 

C T A C G G A 

T A C G G A C 

A C G G A C T 

C G G A C T A 

G G A C T A C 

G A C T A C G 

A C G G A C T 

A C T A C G G 

C G G A C T A 

C T A C G G A 

G A C T A C G 

G G A C T A C 

T A C G G A C 

4 

sort 

ACTACGG 

 TGAAGCC     I=2 



A C G G A C T 

A C T A C G G 

C G G A C T A 

C T A C G G A 

G A C T A C G 

G G A C T A C 

T A C G G A C 

A T 5 

A G 1 

C A 4 

C A 7 

G G 2 

G C 3 

T C 6 

5 

T 
 
 
G 
 
 
A 
 
 
A 
 
 
G 
 
 
C 
 
 
C 

TGAAGCC 

A 
 
 
A 
 
 
C 
 
 
C 
 
 
G 
 
 
G 
 
 
T 

sort 

I=2 L F L F F    L 

ACTACGG 



A T 

A G 1 

C A 

C A 

G G 2 

G C 

T C 

A T 4 

A G 

C A 3 

C A 

G G 1 

G C 2 

T C 

A T 

A G 

C A 

C A 

G G 

G C 

T C 

6 

F    L F    L 
TACG 
 F    L 

ACTACGG 
 |||| 
 TACG 

GGAC? 

ACTACGG 
| |       || 
AC       GG 



$ G 

A T 

A $ 3 

C A 

C A 2 

G G 

G C 

T C 1 
7 

ACTACGG ACTACGG$ 

F L 

GGAC 
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  Variant caller 
 
 
 

•  samtools 
 

 – mpileup + bcftools 
 
 
 
 
 
 
 

•  GATK 
 

 – UnifiedGenotyper 
 

 – HaplotypeCaller 
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GATK 



Unit 4:  
Likelihood and Bayesian approach 

Le Zhang, Ph. D. 
 Computer Science Department 
               Southwest University 



2 

  Outline 
 
 
 

•  Introduction of Likelihood and  
 Bayesian approach  
 
 
 
 
 
 

•  Genotyper of MAQ and SNVMix 
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  Likelihood & Bayesian 
 
 

•  Likelihood function 
 

 – a function of the parameters of a statistical model 
 

 – L(θ) = P(Data|θ) 
 
 
 
 
 

•  Bayesian approach 
 – P(θ|Data) ∝ P(θ)* P(Data|θ) 

 – posterior ∝ prior * likelihood 



4 

A Simple Demostration 

•  Toss a biased coin, let θ= P(Head) in one trial 
 

•  Probability for seeing HTHH? 

•  Probability for seeing 3 Heads in 4 trials? 

Bernoulli distribution 

binomial distribution 
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• 

 Models for SNP Calling and Genotyping 
 
 
 
MAQ 
– Li, H., Ruan, J., and Durbin, R. (2008). Mapping short DNA sequencing reads and calling variants using  

mapping quality scores. Genome Research 18, 1851–1858. 

• samtools 
– Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and  

population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993. 

• GATK 
– 
 
 
 
– 

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler,  
D., Gabriel, S., Daly, M., et al. (2010). The Genome Analysis Toolkit: A MapReduce framework for  
analyzing next‐generation DNA sequencing data. Genome Research 20, 1297–1303. 
DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., del  
Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A framework for variation discovery and genotyping  
using next‐generation DNA sequencing data. Nature Genetics 43, 491–498. 

• SNVMix 
– Goya, R., Sun, M.G.F., Morin, R.D., Leung, G., Ha, G., Wiegand, K.C., Senz, J., Crisan, A., Marra, M.A.,  

Hirst, M., et al. (2010). SNVMix: predicting single nucleotide variants from next‐generation  
sequencing of tumors. Bioinformatics 26, 730–736. 

• … 
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 Genotyping Model used in MAQ 
 
 
 

•  Data: a pile of bases, with baseQ 
 

  – k nucleotide b and (n‐k) nucleotide b' 
   with error rate  
 

•  Goal: call genotype   <b,b>, <b,b'>, <b',b'> 
 
 
 
 
 
 
 

•  For G=<b,b'>, 
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 Genotyping Model used in MAQ 
 
 
 

•  For G=<b,b>, 
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Genotyping Model used in MAQ 
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Genotyping Model used in MAQ 
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Genotyping Model used in MAQ 
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 Genotyping Model used in MAQ 
 
 
 

•  For G=<b,b>, 
 
 
 
 
 
 
 

•  For G=<b,b'>, 
 
 
 
 
 
 
 

•  For G=<b',b'>, 
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 Genotyping Model used in MAQ 
 
 
 
 
 
 
 

•  For G=<b,b>, 
 
 
 
 
 
 

•  For G=<b,b'>, 
 
 
 
 
 
 

•  For G=<b',b'>, 



 Genotyping Model used in SNVMix 
 
 

•   Probabilistic Graphical Model 
  –  position i, read j, genotype k 

– 

– 

– 

– 

– 

Gi: genotype 
aji: match reference allele or not? 
qji: prob. of correct base calling 
zji: alignment correct or not? 
rji: prob. of correct mapping 

–  μk: parameter of binomial for genotype k 
 
 
 
 Goya, R., et al. (2010). SNVMix: predicting single nucleotide variants from  
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Genotyping Model used in SNVMix 

Goya, R., et al. (2010). SNVMix: predicting single nucleotide variants from  
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Genotyping Model used in SNVMix 

Goya, R., et al. (2010). SNVMix: predicting single nucleotide variants from  
  15 
 



Bioinformatics: Introduction and Methods 
  

Computer Science Department, Southwest University 

Thank you  


